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SUMMARY

The aim of this work is to computationally investigate subsonic and transonic turbulent �ows around
oscillating and ramping aerofoils under dynamic-stall conditions. The investigation is based on a high-
resolution Godunov-type method and several turbulence closures. The Navier–Stokes and turbulence
transport equations are solved in a strongly coupled fashion via an implicit-unfactored scheme. We
present results from several computations of �ows around oscillating and ramping aerofoils at various
conditions in order to (i) assess the accuracy of di�erent turbulence models and (ii) contribute towards
a better understanding of dynamic-stall �ows. The results show that the employed non-linear eddy-
viscosity model generally improves the accuracy of the computations compared to linear models, but at
low incidence angles the Spalart–Allmaras one-equation model was found to provide adequate results.
Further, the computations reveal strong similarities between laminar and high-Reynolds number dynamic-
stall �ows as well as between ramping and oscillating aerofoil cases. Investigation of the Mach number
e�ects on dynamic-stall reveals a delay of the stall angle within a range of Mach numbers. Investigation
of the reduced frequency e�ects suggests the existence of an (almost) linear variation between pitch
rate and stall angle, with higher slope at lower pitch rates. The pitch rate a�ects both the onset of
dynamic-stall as well as the evolution of the associated vortical structures. Copyright ? 2003 John
Wiley & Sons, Ltd.

1. INTRODUCTION

In the context of aerodynamics, the numerical simulation of unsteady, turbulent and compress-
ible �ows around moving boundaries is motivated by the need to understand �ow phenom-
ena associated with the behaviour of aircrafts during manoeuvres, as well as �ows around
helicopter rotors and turbomachinery blades. The �ow phenomena appearing in the above
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applications are highly non-linear due to the presence of separation, unsteadiness, shock=
boundary layer, viscous=inviscid, vortex=body and vortex=vortex interactions, transition to tur-
bulence and �ow re-laminarization. A better understanding of the �ow physics in the afore-
mentioned applications will possibly enable us to control the �ow and, subsequently, enhance
the performance of airplanes and helicopters.
The cost of performing wind tunnel or �ight experiments in unsteady �ows is very high.

Moreover, the information obtained through experiments is usually limited—due to the
instrumentation constraints—to pressure distributions or aerodynamic coe�cients, though de-
velopments in experimental techniques (PIV, LDA, etc.) may push further forward the current
state of the art of experiments in unsteady �ows. Numerical simulation of unsteady �ows is
a promising alternative, but it is not free of shortcomings and di�culties; these are primarily
related to numerical and turbulence modelling limitations. At the most advanced computational
level, turbulent �ows can be studied by performing direct numerical simulation (DNS). DNS
requires large computing resources and it is so far applicable only at low Reynolds num-
bers. An alternative could be the large eddy simulation (LES). However, three-dimensional
computations still need to be performed and this would require large computing resources,
though less than DNS; moreover, careful modelling, especially of the near-wall �ow, still
remains an open issue in both LES and RANS computations. For the time being, unsteady
Reynolds-averaged Navier–Stokes simulations (URANS) seem to be the only feasible way for
simulating �ows around moving aerofoils at Reynolds numbers of the order of 106–107.
One of the major challenges in the computation of unsteady aerodynamic �ows is the accu-

rate prediction of the dynamic-stall (DS) phenomenon. This appears in high-angle manoeuvres
and is caused by the development of an energetic vortical structure known as dynamic-stall
vortex (DSV). Accurate prediction and, possibly, control of dynamic stall can enhance the
performance in various engineering applications. For example, the manoeuvrability of �ghter
aircrafts could be enhanced if the unsteady airloads generated by DS are utilized in a con-
trolled manner. E�ective stall control of the retreating blade of a helicopter rotor could also
increase the maximum �ight speed by reducing rotor vibrations and power requirements.
Similarly, by controlling DS the maximum speed of wind mills or turbine rotors can be in-
creased resulting, subsequently, in more e�cient production of electrical energy and reduction
of vibration. The phenomenon of dynamic stall can be studied by considering the pitching
motion of an aerofoil beyond its static-stall incidence angle. As a result of the pitching mo-
tion, the dynamic-stall vortex is formed and is subsequently accompanied by additional vortices
emerging from the leading and trailing edge of the aerofoil. During the pitching motion, large
variations of the aerofoil’s aerodynamic loads occur.
Reviews of past experimental works can be found in the papers of Telionis [1] and

McCroskey et al. [2–5], while another experimental study was more recently published by
Piziali [6]. Doligalski et al. [7] have also reviewed theoretical work on vortex interaction and
separation including dynamic stall. Analytical studies include the investigation of linear and
non-linear instability of a leading edge separation by Smith [8] and the interaction of a vortex
with a boundary layer by Peridier et al. [9].
Past studies include the investigation of dynamic stall in laminar �ows, e.g. References

[10–12] and references therein, as well as in turbulent �ows, e.g. References [13–21]. The
studies concerned with turbulent �ows have been performed using algebraic, one-equation, as
well as high-Re k–� and k–! models while there is a limited number of studies employing
more advanced turbulence closures [21].
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Past research on steady turbulent �ows has shown that the accuracy of numerical
predictions is signi�cantly a�ected by the accuracy of the turbulence model employed. Ex-
perience using zero-equation turbulence models (e.g. Reference [22]) has shown that these
models do not provide satisfactory results, especially in separated �ows. Linear eddy-viscosity
models provide satisfactory results for attached, fully developed turbulent boundary layers with
weak pressure gradients and are also relatively easy to implement into computational �uid
dynamics (CFD) codes. Linear low-Re two-equation models seem to o�er the best balance
between accuracy and computational cost, but since they employ the Boussinesq approx-
imation for the Reynolds stress tensor, they are not able to capture e�ects arising from
normal-stress anisotropy. Second-moment closures o�er a more exact representation of the
Reynolds stresses but require longer computing times and careful numerical implementation
for obtaining stable numerical solutions. Reynolds-stress models have been used in the past to
investigate shock=boundary-layer interaction (see References [23, 24], amongst others). These
studies have shown that in certain cases second-moment closures may provide better results
than linear models, but in other cases the results are inconclusive. Other approaches in turbu-
lence modelling include the non-linear eddy viscosity models (NLEVM) [25, 26] and explicit
algebraic stress models (see References [27–29]).
NLEVMs is one of the approaches employed in this study. The objective of this approach is

to introduce closures that incorporate key features of the Reynolds-stress models, but which;
however, require computational e�ort comparable to linear two-equation eddy-viscosity mod-
els [25, 30–32]. Other attempts to use advanced turbulence models in aerodynamic �ows can
be found in the works of Gatski [27], Jiang et al. [33], and Barakos and Drikakis [21, 34, 35].
The experience from steady �ows has shown that NLEVMs o�er some promising capabilities
in terms of accuracy and, additionally, are more economic in terms of computing resources
compared to the Reynolds-stress transport models. Non-linear models have been and are still
being re�ned and validated for steady �ows, mainly two-dimensional and incompressible (see
References [26, 36]) while some experience has also been acquired from applications to com-
pressible �ows, e.g. References [24, 27, 34, 35].
In addition to turbulence modelling, other challenges are associated with the robustness

of numerical methods employed for the time integration of the Navier–Stokes and turbu-
lence transport equations. Computations of �ows around moving boundaries are demand-
ing in terms of computing time and, therefore, numerical issues in connection with the
time integration of the Navier–Stokes equations require careful consideration. In the past,
many researchers have developed Navier–Stokes methods for unsteady inviscid and viscous
�ows based on explicit, implicit approximate-factorization or hybrid schemes, e.g. References
[15, 16]. Explicit schemes require the use of very small time steps which lead to long comput-
ing times. Approximate-factorization schemes allow larger time steps, but still pose stringent
constraints regarding the maximum Courant–Friedrichs–Lewy (CFL) number, especially in
three-dimensional �ows. On the other hand, implicit-unfactored schemes which use Newton
sub-iterations allow larger CFL numbers and are less sensitive to the choice of time step
than approximate-factorization schemes [37]. Concerning the discretization scheme, the state-
of-the-art numerical methods used in the simulation of compressible �ows have principally
been developed for the Euler equations of gas dynamics and have been designed to ac-
count only for the mean �ow variables. The authors have developed a Godunov-type method
which accounts directly for the turbulence �ow quantities, and have investigated the method’s
performance in conjunction with eddy-viscosity models [38]. The coupling of turbulence and
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mean �ow equations was found to be of particular importance in the case of unsteady �ows
since it avoids the use of two di�erent time steps which, depending on the case, may lead to
numerical instabilities. The Godunov-type method and implicit-unfactored scheme of [20, 38]
form the computational basis of the present study.
The objectives of the present work are (i) to assess the accuracy of di�erent turbulence

models in dynamic-stall �ows around oscillating and ramping aerofoils, (ii) to study dynamic-
stall �ows for a range of �ow conditions, and (iii) to investigate the Mach number and reduced
frequency e�ects for the �ows in question. The paper is organized as follows. Section 2
presents the governing equations, numerical method and turbulence models used in this study.
In Section 3 we present results from several �ow computations including small amplitude
oscillating �ows at subsonic and transonic Mach numbers, as well as dynamic-stall �ows at
high amplitude, high mean incidence angle. Further, we discuss the e�ects of the reduced
frequency and Mach number on the above �ows. The purpose of the computations is to
present the extended range of conditions over which dynamic stall occurs, as well as to
highlight the dependence of the predictions on the employed turbulence models. Wherever
possible, direct comparisons with experimental results are presented. In Section 4 we discuss
the �ow development under dynamic-stall conditions around ramping and oscillating aerofoils
by looking into the whole spectrum of computations performed in the course of the present
work. Finally, Section 5 summarizes the conclusions drawn from our investigation.

2. MATHEMATICAL MODELLING

In this section, we brie�y present the governing equations, turbulence models and numerical
method used. Details about the numerical scheme can be found in References [20, 38].

2.1. Governing equations

The governing equations employed here are the two-dimensional, unsteady Reynolds-averaged,
compressible Navier–Stokes equations. Additional equations are required to model turbulence
transport. The governing equations are solved in a non-inertial frame of reference (NIFR)
(Figure 1).
For all test cases presented in this work the aerofoil performs either a harmonic oscillation

or a ramping motion about its quarter-chord axis (Figure 1). The harmonic oscillation is given
in terms of the angle-of-incidence, �(t), by

�(t)= �0 + �1 sin(!f t) (1)

where �0 and �1 are the mean angle and amplitude of the harmonic oscillation, respectively. In
the case of oscillating aerofoils, the unsteady motion is usually characterized by the similarity
parameter kf , known as reduced frequency of the oscillation; this is de�ned by

kf =!f c=2U∞ (2)

where c is the aerofoil chord, !f is the frequency of the oscillation and U∞ is the free-stream
velocity. For the ramping cases the variation of the incidence angle is given by

�(t)= �0 + �̇t (3)
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Figure 1. Schematic of the �ow domain.

The pitch rate is non-dimensionalized as

kf = �̇c=U∞ (4)

where �̇ is the pitch rate in degrees per second. Both the harmonic oscillating and ramping
cases are hereafter referred to as pitching aerofoil cases.
For the simulation of unsteady �ows around pitching aerofoils, we employ the URANS

equations for a compressible �uid:

@�
@t
+
@
@xi
(�ui) = 0 (5)

@�ui
@t

+
@
@xi
(�uiUj + p�ij − �ij) = 0 (6)

@�e
@t
+
@
@xi
(�Ui(e+ p)− ui�ij − q̇i) = 0 (7)

Ui = ui − ugi (8)

where ui (i=1; 2) are the �uid velocity components, u
g
i (i=1; 2) are the velocity components

due to the motion of the computational grid, p is the pressure, � is the density and e is
the total energy per unit volume. The pressure is calculated by the ideal gas equation of
state (p=�RT ; R is the gas constant and T is the temperature) and �ij is obtained by the
sum of the laminar and Reynolds stress tensors. To close the above system of equations, the
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de�nitions of the turbulent Reynolds stresses and heat �uxes (q̇i) as functions of the mean
�ow quantities are required. For the linear EVM, the stress tensor is de�ned according to the
Boussinesq approximation, i.e. it is proportional to the mean strain-rate tensor, with the factor
of proportionality being the eddy viscosity (�T). The eddy viscosity is modelled in terms of
the turbulent kinetic energy and a turbulence scale variable, the latter being dependent on the
model employed (see Section 2.2). The total stresses and heat �uxes for the case of linear
EVMs are calculated as follows:

�ij = �lij + �tij (9)

�lij = �(Sij − Snn�ij=3) (10)

�tij = �T(Sij − Snn�ij=3)− 2�k�ij=3 (11)

where Sij=(Ui; j + Uj; i)=2 is the mean strain rate, k is the kinetic energy of turbulence, and
� is the dynamic viscosity of the �uid. The heat �ux rates are modelled according to the
Fourier’s law:

q̇i= q̇li + q̇ti=−
(
�
Pr
+
�T
PrT

)
@T
@xi

(12)

where Pr and PrT are the laminar and turbulent Prandtl numbers, respectively. The turbulence
models employed here are discussed in the next section.

2.2. Turbulence modelling

The stress tensor �ij= �lij + �tij contains molecular and Reynolds-stress contributions. Linear
eddy-viscosity models of the k–� type require the solution of two transport equations, one
for the kinetic energy of turbulence, k, and one for the turbulent dissipation rate, �, or its
isotropic component �̃ (�̃ ≡ � − �̂, �̂ ≡ 2�=�(@

√
k=@xj)2). These models make use of the

Boussinesq approximation to model the Reynolds-stress tensor. According to Fan et al. [39],
for turbulent �ows far from equilibrium, like the unsteady �ows investigated in the present
paper, it is suggested to avoid the use of the parameter y+ (y+ =y�u�=�, where y is the
distance from the solid boundary and u� is the friction velocity) in the near-wall formulation
of the turbulence models. Instead, the turbulent Reynolds number or, alternatively, the near-
wall Reynolds number should be used. In view of the above, the following LEVMs have been
employed in this study: (i) the one-equation turbulence model of Spalart and Allmaras (SA)
[40], (ii) the linear low-Re k–� EVMs of Launder and Sharma (LS) [41] and Fan et al. [39].
Further, we have employed NLEVMs which use an expansion of the Reynolds-stress com-

ponents with respect to the mean strain-rate Sij and rotation �ij=(Ui; j−Uj; i)=2 tensors. Craft
et al. [36] and Suga [42] developed a low-Re, cubic non-linear eddy viscosity model and
applied it to incompressible �ows. Their studies indicate that the model is able to give
results close to the ones obtained by second-moment closures. The detailed formulation of
the employed NLEVM can be found in the paper of Craft et al. [26] and, thus, are not
repeated here. The performance of the NLEVMs in steady shock=boundary-layer interaction
has been discussed in Reference [34]. Although in this study we do not aim to carry out a
detailed investigation of second-moment closures, some comparisons between the Launder–
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Shima Reynolds-stress transport model (RSTM) [43] and the EVM models, are also presented
in the results section.

2.3. Numerical method

A detailed description of the numerical method employed here can be found in the papers of
Barakos and Drikakis [20, 38]. A brief description of the method is given below.
We solve the conservation equations of mass, momentum and energy in conjunction with

the turbulence-transport equations using a �nite volume approach and body-�tted curvilinear
co-ordinates. A Godunov-type method [38, 44–46] is used for discretizing the advective �uxes.
Limiters based on the squares of pressure derivatives are employed for detecting shocks and
contact discontinuities. The viscous terms are discretized by central di�erences.
Careful consideration has been given to the time integration of the equations. Both explicit

and implicit schemes have been implemented into the present CFD code [38] and their e�-
ciency is strongly dependent on the time scales imposed by the prescribed motion of the solid
boundaries. In this study, we solve the six or nine equations (in the case of second-moment
closure) in a strongly coupled fashion by an implicit-unfactored method which combines
Newton sub-iterations and point Gauss–Seidel relaxation. The implicit-unfactored implemen-
tation enables us to achieve convergence in the case of complex turbulence models which
contain sti� source terms, e.g. NLEVMs. The method requires a moderate number of Newton
iterations (40–500, depending on the �ow case) at each time step. In unsteady �ows the
steady-state solution around a �xed boundary is given as initial condition [20]. Additionally,
to achieve large CFL numbers, preconditioning of the inversion matrix is performed at each
Gauss–Seidel sub-iteration [38].

3. COMPUTATION OF DYNAMIC STALL FLOWS

Several �ow cases around pitching aerofoils, ranging from subsonic to transonic and from
laminar to turbulent �ow conditions, have been computed in order to assess the accuracy
of turbulence models and provide quantitative and qualitative information about the �ow
development under dynamic stall conditions.
Three di�erent aerofoils were employed in the computations namely, the NACA-0012,

NACA-0015 and NACA-64A010, for which experimental data are available, e.g. Reference
[6].
The computations have been performed using body-�tted, structured C-type grids. The grid

have been generated using an elliptic grid generation method [47]; it contains 200 cells on
the aerofoil’s surface, 50 cells along each side of the arti�cial boundary behind the aerofoil’s
trailing edge (lines AB and CD in Figure 1) and 90 cells in the vertical direction. A coarser
mesh with 180× 80 grid points has been used for the one-equation SA model. The grid lines
have been clustered close to the aerofoil’s surface in the direction normal to the wall as
well as around the leading and trailing edges of the aerofoil. In all computations, the �rst
grid node above the solid boundary was placed at a distance of 10−6c, resulting in y+¡1.
The far-�eld boundary was placed at 6c in the upstream direction and at 10c in the wake
direction. Characteristic boundary conditions are posed around the computational domain. The
above dimensions of the computational domain in combination with characteristic boundary
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Table I. Summary of the validation cases.

Case Aerofoil M∞ Rec kf �0 �1 (x=c)rot (x=c)trip

Oscillating
1 (CT1) 0012 0.6 4:8× 106 0.16 2.8 2.4 0.25 0.1
2 64A010 0.796 12:56× 106 0.202 0 1.01 0.248 0.1
3 0015 0.29 1:95× 106 0.1 17 4.2 0.25 0.2

Ramping

5 0012 0.56 4:5× 106 0.85 −4:0 30 0.25 0.1

conditions have been found to be su�cient for avoiding numerical e�ects on the �ow solution,
e.g. re�ection of pressure waves at the boundaries.
The level of the free-stream turbulence has been kept constant at 0.5% of the kinetic energy

of the incoming stream. A length scale of 0:01c has been used to estimate the free stream
value of the turbulence energy dissipation rate. As initial conditions, the steady-state solution
of the �ow around the aerofoil has been used. A summary of the test cases is given in Table I.
The validation of the models for each case is discussed below.

3.1. Small amplitude oscillations versus dynamic stall

The �rst case is the unsteady transonic �ow around a NACA-0012 aerofoil with Mach and
Reynolds numbers of 0:6 and 4:8× 106, respectively. The mean incidence angle is 2:8◦ and
the amplitude of oscillation is 2:4◦. The aerofoil performs pitching motion with respect to
the quarter-chord axis (x=c=0:25) at a reduced frequency of 0.16. The case is identi�ed as
CT1 in the AGARD compendium of unsteady aerodynamic measurements [48]. The results
for the lift and moment loops are shown in Figures 2(a) and 2(b) for the linear EVM model
of Fan et al. [41] (FLB), the NLEVM of Craft et al. [26] and the RSTM of Launder and
Shima [43]. Because of the high value of the freestream Mach number, a shock appears in
the leading edge region of the aerofoil. The strength of the shock changes as the aerofoil
oscillates. The di�erences between di�erent models predictions are re�ected on the moment
loop where discrepancies between numerical predictions and experimental data are shown.
Detailed comparisons between experiments and simulations for the instantaneous Cp distri-
butions are presented in Figures 2(c)–2(f). Di�erences between the model predictions are
encountered only in the shock region; the di�erences are subsequently re�ected on the Cl and
Cm coe�cients. Comparing the CPU time required for each of the above models, the second
moment closure was found to be the most demanding. For the present �ow case, the RSTM,
NLEVM and LEVM models require 16.2, 9.5 and 8.9 work units (one work unit corresponds
to a minute of CPU time on a HP 9000=700=99 workstation), respectively. On the other hand,
for all cases considered in the present paper the results for the aerodymanic loads obtained
by the RSTM were almost identical with those predicted by the NLEVM.§ In view of the

§We should point out that a thorough assessment of second-moment closures requires experimental data for the
turbulent stresses; such data are not however available yet for the �ows in question.
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Figure 2. Comparisons of various models for the AGARD CT-1 case. (a) Cl loop,
(b) Cm loop, (c)–(f) instantaneous Cp curves.

above, for the rest of the validation cases we present only the results obtained by the linear
and non-linear eddy-viscosity models.
The second validation case is the transonic �ow around an oscillating NACA-64A010 aero-

foil. The �ow conditions correspond to Reynolds and Mach numbers 12:56× 106 and 0.796,
respectively, and experimental data are available [48] for the hysteresis loops and instan-
taneous surface pressure distributions at various incidence angles. The mean incidence and
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Figure 3. Comparisons of di�erent models for the oscillating NACA-64A010 at transonic �ow
conditions. (a) Cl loop, (b) Cm loop, (c)–(f) instantaneous Cp curves.

oscillation amplitudes are 0 and 1:01◦, respectively. The reduced frequency of the oscillation
is kf = 0:202. For this �ow case, shock waves appear both on the pressure and suction sides
of the aerofoil, and their relative strength and position changes as the aerofoil oscillates.
Comparisons between the algebraic Baldwin–Lomax [22], the Fan et al. [39] (FLB)

k–� model, and the NLEVM of Craft et al. [26] (NL) are shown in Figure 3 for the lift
and moment loops. The NLEVM provides better results, especially for the Cm loop. This
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is also associated with the better results provided by the NLEVM for the shock positions
on the pressure and suction sides of the aerofoil; this can be seen in the instantaneous Cp
distributions (Figures 3(c)–(f)).
The third case is a deep-stall computation around the NACA-0015 aerofoil. Experiments for

this aerofoil have been performed by Piziali [6], and these were used herein. The experimental
results include hysteresis loops of the lift, drag, and moment coe�cients. The data correspond
to deep-stall conditions at which the static-stall angle is exceeded.
In order to carry out the unsteady computations, the quasi-steady turbulent �ow around the

aerofoil at mean incidence angle is computed �rst, and the solution is given as initial condition
to the unsteady-�ow calculation. The free-stream conditions correspond to a Reynolds number
of 1:95× 106 and a Mach number of 0.29. The amplitude of the oscillation is 4:2◦, the mean
incidence is 17◦ and the reduced frequency of the oscillation is kf = 0:1. The Spalart–Allmaras
(SA) [40], the Launder–Sharma (LS) [41] linear k–� and the Craft et al. NLEVM model (NL)
[26] are employed in the computations. Quasi-steady computations (not shown here) indicated
that all models predict stalled �ow for incidence angles about 13◦. Therefore, only unsteady
solutions should be carried-out for higher incidence angles.
Results for the unsteady airload hysteresis loops are shown in Figure 4. The comparisons

with the experimental results show that the NLEVM improves the predictions compared to
LEVMs, but the di�erences with the experiment still remain large. The linear model leads to
excessive production of turbulence, whereas the NLEVM predicts lower levels of turbulence,
and thus the dynamic-stall vortex (DSV) separates more readily. The results show that the
predictions of the NLEVM and SA models are comparable for some parts of the unsteady
cycle, except for the higher values of the incident angle where the NLEVM results are closer
to the experimental data. The di�erences between the models are more pronounced in the
moment loop. The results for the moment coe�cient are better predicted by the NL model,
but discrepancies between computations and experiment still exist.
We note that in contrast to the previous AGARD cases, in the dynamic stall case of the

NACA-0015 the aerofoil exhibits higher lift during the upstroke motion than during the down-
stroke. The situation is reversed in small amplitude oscillations where the �ow is essentially
attached and the aerodynamic loops are mainly associated with the hysteresis of the boundary
layer’s response to the motion of the lifting surface.

3.2. Mach number and pitch-rate e�ects

We have performed an investigation of the Mach number and pitch-rate e�ects for a ramping
NACA-0012 aerofoils. In the past, several experimental investigations have been carried out
in connection with ramping NACA 0012 aerofoils [48–50]. Here, we have performed compu-
tations for M∞=0:56 and Re=4:5× 106 and for a dimensionless pitch rate of 0:85◦=s; this
pitch rate allows all calculations to be in the dynamic-stall regime. The incidence angle varies
from 0◦ to a maximum of 30◦. This case was selected because it combines relatively high
Mach number and stall, the latter occuring at high incidence angles. Figure 5 compares the
Mach-scaled lift coe�cient as predicted by linear and non-linear EVMs, with experimental
results from [48]. Comparisons between simulation results and experimental data for the pres-
sure coe�cient distributions at three di�erent time instants are also shown in the same �gure.
At low angles of incidence, the �ow is attached, and both models predict almost perfectly
the experimental values. At higher incidence angles, where a shock is formed close to the
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Figure 4. Comparison of linear (LS) and non-linear (NL) eddy-viscosity models for the unsteady
airloads of the NACA-0015 aerofoil.

leading edge of the aerofoil, the NLEVM provides better predictions, though there are still
signi�cant discrepancies between the numerical results and the experiment. After the stall,
and as the aerofoil reaches the maximum incidence, the predictions of the models start to
converge again, but discrepancies with the experimental data still exist, especially close to the
leading edge of the aerofoil (Figure 5(d)).
Using the above �ow case, we performed an investigation of the Mach number e�ects

on the stall angle. Past experimental studies [51] have shown that at high Mach numbers
(M∞¿0:45) the shock suppresses the onset of the separation bubble at the leading edge of
the pro�le and the stall mechanism is initiated by shock=boundary-layer interaction, in contrast
to lower Mach numbers (M∞¡0:45) where the dynamic stall initiates from adverse-pressure-
gradient separation. Here, we performed calculations at Mach numbers of 0.46, 0.56, 0.66 and
0.76 and the lift curves are shown in Figure 5(e). The increase of Mach number results in a
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Figure 5. Ramping NACA-0012: (a) lift curve, and comparison between the numerical and
experimental results for the Cp coe�cient at (b) 5◦, (c) 10:5◦, (d) 15◦; (e) Mach number e�ects

on the lift for a ramping NACA-0012 aerofoil.

reduction of the maximum lift as well as in a slight change of the stall angle. The values of
the maximum lift coe�cient and stall angles are also given in Table II. The present results
are in agreement with previous calculations by Choudhuri and Knight [12] who also reported
a delay of the stall angle when increasing the Mach number.
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Table II. Maximum lift coe�cient and stall angle for a ramping NACA-0012 aerofoil
at various Mach numbers (Re=4:5× 106; �0 = − 4◦; �1 = 30◦; kf = 0:85).

Mach Number Max. Cl �stall

0.46 1.58 11.8
0.56 1.27 12.4
0.66 0.56 13.7
0.76 0.71 14.3

One of the most important parameters in unsteady �ows around ramping and oscillating
aerofoils is the speed of the induced motion of the pro�le, since this constitutes the driving
mechanism of the DS phenomenon. Wilby [49] analysed data from several experiments for
rapidly ramping aerofoils and showed that the dependence of the stall angle on the ramping
rate can be represented by a curve with two branches (Figure 6(a)). For high pitch rates,
there is an almost linear relationship between pitch rate and stall angle. The same also applies
to low pitch rates, but the linear relationship has a di�erent slope. According to Wilby [49],
there is a region of pitch rates where the two curves intersect, marking clearly that, at low
pitch rates, there is a de�nite change of the phenomena associated with the unsteady motion
of the pro�le. However, no complete set of experimental data was found to cover a range of
reduced frequencies at the same Reynolds and Mach numbers and, thus, only qualitative com-
parisons between the present calculations and Wilby’s �ndings are possible. Our investigation
is performed for a ramping NACA-0012. In all computations, the same values of the Mach
and Reynolds numbers are used (M =0:302; Rec=4:5× 106), while the pitch rate, kf , varies
from 2 to 0.1. Various models were initially tested, and it was found that the best compromise
between accuracy and computational cost is obtained by the two-equation NLEVM. However,
for angles of incidence up to about 16◦, the one-equation Spalart–Allmaras model was found
to give similar results; the linear EVMs were too dissipative, thus suppressing separation,
especially at low pitch rates.
Figure 7 presents the time history of the lift coe�cient as well as the instantaneous surface

pressure distribution at the stall angle, for three di�erent pitch rates kf = 2; 0:5 and 0:1. Results
are presented using the NLEVM of Craft et al. [26] and the Spalart–Allmaras [40] models.
The main �nding is that for pitch rates less than 0.5 the DSV is not present during the pitch.
Instead, a trailing edge vortex was present. This is shown in Figure 7 in the instantaneous Cp
curve at stall conditions. Moreover, at even lower pitch rates (Figure 7(c)) periodic shedding
of vortices from the trailing edge was also encountered, leading subsequently to oscillating
aerodynamic loads.
Several calculations were also performed to investigate the e�ects of the number of time

steps on the predicted aerodynamic loads and Figure 6 shows the number of time steps as
function of the pitch rate. To resolve the periodic shedding of vortices at lower pitch rates a
much �ner time resolution is required.
For all cases the stall angle is determined based on the change of sign of the derivative of

the lift and moment curves and the results using the NLEVM and Spalart–Allmaras models are
shown in Figure 6(c). The computations, especially those with the NLEVM, reveal a change
of the curve slope at lower values of the pitch rate, and this is in agreement with Wilby’s
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Figure 6. (a) Schematic of the variation of the stall angle with the pitch rate according to Wilby
(1996); (b) e�ects of time-step on the predicted unsteady airloads of a ramping NACA-0012 aerofoil
(M =0:302; Re=106; �0 = − 4◦; �1 = 30◦; kf = 1:125); (c) time steps required for convergence for
di�erent pitch rates, for the ramping NACA-0012 aerofoil; (d) numerical predictions of the variation

of the stall angle with the pitch rate for a ramping NACA-0012 aerofoil.

�ndings [49]. Plate 1 shows the separated �ow region on the suction side of the ramping
pro�le for three values of the pitch rate. In these plots, the DSV, the trailing edge separation
and the trailing edge vortices are shown. Further, the time histories of the pressure-coe�cient
distributions (Plate 1), suggest that there are di�erences in the DSV onset between lower and
higher pitch rates. In the former case a vortex is formed at the trailing edge of the aerofoil
as soon as the aerofoil reaches a certain incidence angle. The shedding of this vortex in the
wake marks the stall of the aerofoil and this is very similar to the static stall. On the other
hand, at higher pitch rates the DSV formed near the leading edge of the pro�le propagates
downstream over the suction side of the aerofoil and is �nally shed in the wake.

3.3. Further comments on the models performance

The CPU time for a single time step, as well as the number of time steps needed for every
period of oscillation, depend strongly on the �ow case and turbulence model employed. The
one-equation model provides faster results compared to two-equation linear and non-linear

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:163–186



178 G. N. BARAKOS AND D. DRIKAKIS

Figure 7. Time history of the lft coe�cient (left) and instantaneous surface pres-
sure distribution at stall angle (right) for a ramping NACA-0012 aerofoil with
(a) kf = 2:0, (b) kf = 0:5 and (c) kf = 0:1; M =0:302; Re=106; �0 = −4◦; �1 = 30◦;

NL=non-linear model and SA=Spalart–Allmaras model.
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Plate 1. Density �eld near the stall incidence (left) and time history of the surface pres-
sure distribution (right) around a ramping NACA-0012 aerofoil at various pitch rates

(M∞=0:302; Re=106; �0 = − 4◦; �1 = 30◦).
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Plate 2. Startup of �ow over a NACA-0012 aerofoil at high incidence angle (Re=1000; �=23◦).

Copyright @ 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:(2)



(a) (b)

(c) (d)

(e) (f)

Plate 3. Density �eld around a ramping NACA-0012 aerofoil
(Re=105; M =0:25; kf = 1; �max = 60◦).
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Plate 4. Density �eld around a harmonically oscillating NACA-0012 aerofoil
(Re=106; M =0:2; kf = 0:2; �0 = 15◦; �1 = 10◦).
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Plate 5. Mach number �eld around an oscillating NACA-0012 aerofoil; AGARD CT1 Case
(M =0:6; Rec=4:8× 106; kf = 0:16; �0 = 2:8◦; �1 = 2:4◦).
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models. For all unsteady cases examined in this work, three oscillation cycles were required
to obtain the periodic loads. The number of time steps per oscillation cycle varied from 48
for the CT1 case to 145 for the deep-stall oscillation of the NACA-0012. The CPU time per
step doubles when a two-equation model is employed instead of an algebraic one [22]. The
NLEVM has been found to be more di�cult to converge and requires a further reduction
of the CFL number. For the most di�cult case considered here (oscillating NACA-0012 at
deep-stall conditions) about three to four days of CPU time on a single processor of a Silicon
Graphics Origin 2000 machine, are required to obtain converged unsteady solutions using the
NLEVM. The considerably increased CPU requirements for the NLEVM are due to the fact
that the model increases the sti�ness of the numerical solution and results, in general, in
slower convergence rates.

4. FLOW DEVELOPMENT UNDER DYNAMIC-STALL CONDITIONS

In this section, we present results from the computational investigation of dynamic stall �ows
at various �ow conditions.
There are several phenomena associated with the pitching motion of an aerofoil, the most

important being the generation of intense vorticity over the suction surface near the leading
edge. As the pitching motion goes on, the DSV is formed, detaches from the aerofoil and
convects along the suction surface. The above are associated with large variations of the
lift, drag and pitching moment coe�cients. The DS evolves either with the generation of
weaker vortices, if the aerofoil remains above its static angle of incidence (ramping case), or
terminates if the aerofoil returns to an angle su�ciently small to allow re-attachment of the
�ow (oscillating case).
The �ow visualization experiments of Daube et al. [52] regarding the startup of the �ow

around a NACA-0012 aerofoil have shown similarities between the development of the DS
at laminar and turbulent �ow conditions. Therefore, we initially performed calculations at
laminar �ow conditions and comparisons between the �ow visualization of Daube et al. [52]
and our computations are shown in Plate 2. The separation bubble formed at the leading edge
of the aerofoil evolves to a big vortex over the suction side of the aerofoil (Plate 2(a)). As
the vortex moves towards the trailing edge, two other vortices (Plate 2(b)) are formed in the
neighbourhood of the leading edge. Additionally, at the trailing edge another vortex is formed
as the result of the �ow emerging from the pressure side of the pro�le (Plate 2(b)). The
initially formed vortex is shed at the wake (Plate 2(c)) while the trailing edge vortex grows
(Plate 2(d)) and subsequently dominates the region over the aerofoil. Then, a new leading
edge vortex starts growing again to repeat eventually the unsteady cycle. The �ow phenomena
as described above are very similar to the ones described by McCroskey and Philippe [53]
for the �ow around a ramping aerofoil.
To examine the similarity of dynamic stall �ows at laminar and turbulent �ow conditions,

we performed simulations around pitching and oscillating aerofoils at high Reynolds numbers.
The density �eld around a ramping NACA-0012 aerofoil at various angles of incidence is
shown in Plate 3. The dynamic-stall vortex emerging from the leading edge grows in size as
the incidence increases. At higher incidence angles there are two other vortice, one formed at
the leading edge upstream of the DSV, and another one that emerges from the trailing edge.
Near the maximum incidence, both the DSV and the trailing edge vortices detach from the
aerofoil’s surface.
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Figure 8. Flow topology around a harmonically oscillating aerofoil at (a) subsonic
and (b) transonic turbulent �ow conditions.

Further, the numerical �ow visualizations for the harmonically oscillating NACA-0012 aero-
foil at high-Reynolds number and deep stall conditions, discussed in the preceding section,
are shown in Plate 4. The onset of the DSV is not di�erent from the ramping case. At high
incidence angles the vortical structure formed over the aerofoil is very similar to the one
presented in the startup of the laminar �ow and in the turbulent �ow around the ramping
NACA-0012. The only di�erence is that for the oscillating aerofoil the DSV is shed at the
wake as the aerofoil begins the downstroke motion, and the �ow starts to reattach at the
leading edge. A comparison of the vortical structures for the startup of the �ow as well as
for the ramping and harmonically oscillating cases can be made by looking at Plates 2(b),
4(f) and 3(e), respectively.
The �ow development for the above cases is di�erent from the hysteresis �ow presented

in the preceding section for the AGARD CT1 case, where a weak shock is formed in the
leading edge region (Plate 5). A consolidated qualitative representation of the �ow phe-
nomena appeared at subsonic and transonic �ow conditions is given below. Figures 8 and
9 present the �ow topology for the case of a harmonically oscillating aerofoil at subsonic
turbulent �ow conditions and harmonically oscillating aerofoil at transonic turbulent �ow
conditions, respectively. Both �gures have been created by analysing results from various
computations performed in this study and are abstractions of Figures 10 and 11 which
present instantaneous streamtraces for a ramping NACA-0012 at low and high Mach numbers,
respectively.
Both in subsonic and in transonic cases, generation of vorticity on the suction side of the

aerofoil at the early stages of the upstroke motion occurs. Figures 8(a) and 9(b) show that
separation starts at the trailing edge as a clockwise rotating vortex and, subsequently, leading
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Figure 9. Flow topology around a harmonically oscillating aerofoil at transonic turbulent �ow conditions.

edge separation occurs (Figures 8(c) and 9(c)). For rapidly pitching aerofoils, separation may
start directly from the leading edge (Figure 9(c)). For high Mach numbers this situation is
assisted by the shock formed close to the leading edge of the pro�le. As the upstroke motion
continues the DSV is formed; the DSV is rotating clockwise and moves towards the trailing
edge of the aerofoil (Figures 8(d) and 9(e)), while a smaller vortex simultaneously forms
between the DSV and the aerofoil’s wall (Figure 8(e)). Subsequently, this vortex breaks up
into a pair of vortices. Further, a counter-clockwise rotating vortex forms at the trailing edge
of the pro�le (Figures 8(g) and 9(h)) due to the roll-up of a fast moving stream of �uid
emerging from the suction side of the pro�le. At maximum incidence angle the DSV is shed
in the wake. During the downstroke motion of the aerofoil all vortices are shed in the wake
and the �ow gradually reattaches starting from the leading edge region (Figures 8(j)–8(l)).
For higher Mach numbers the shock formed close to the leading edge of the pro�le may
delay reattachement (Figure 9(j)). For the case of a ramping aerofoil there is no downstroke
motion. At the maximum angle, the aerofoil remains steady and stalls.
The e�ects of the various �ow structures on the aerodynamic loads are discussed below.

Figure 12 presents the time history of the aerodynamic loads as predicted using the NLEVM.
Figure 12(a) suggests that for the CT1 case (moderate Mach number, small mean angle and
oscillation amplitude) there is a smooth variation of the Cp coe�cient during the unsteady
oscillation, thus, resulting in a simple hysteresis loop. Figure 12(b) presents the wall-pressure
history for the NACA-0012 aerofoil harmonically oscillating at deep-stall subsonic conditions.
It is evident that there is an abrupt change of the Cp coe�cient as the maximum incidence
is approached. The presence of the DSV is indicated by a second peak on the Cp curve
(Figure 12(b)). The above �ow behaviour is totally di�erent from the static stall of an aerofoil
where separation initially occurs at the trailing edge region and the stall angle is smaller.
Figure 12(c) shows the history of the Cp coe�cient for a harmonically oscillating NACA-0012
at low frequency. The conditions are close to those of the deep-stall oscillating NACA-0012
aerofoil, but the reduced frequency of oscillation is much smaller (kf = 0:05). As shown,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Evolution of the dynamic stall over a ramping NACA-0012 aerofoil at subsonic �ow
conditions (Re=4:5× 106; M =0:302; �0 = − 4◦; �1 = 30◦; kf = 1:5).

the DSV is not present and vortex shedding occurs directly at the trailing edge region as
the stall-angle is approached. This is essentially a quasi-steady calculation—pitching at very
low rate—and the stall angle is the static one. For a higher Mach number—case of ramping
NACA-0012—separation of the boundary layer is associated both with the moving boundary
and with the shock=boundary-layer interaction. Figure 12(d) shows the time history of the Cp
for the case of the ramping NACA-0012. The presence of a shock is evident in the middle of
the plot, at dimensionless time-step about 50 while vortex-shedding has started earlier. The
path of the vortex around the aerofoil is not as clear as for the subsonic case, because for
the ramping case �ow separation starts downstream of the shock.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Evolution of the dynamic stall over a ramping NACA-0012 aerofoil at transonic �ow
conditions (Re=4:5× 106; M =0:775; �0 = − 4◦; �1 = 30◦; kf = 1:5).

5. CONCLUDING REMARKS

A computational study of dynamic-stall �ows at subsonic and transonic Mach numbers was
presented. The investigation was based on an implicit-unfactored solver and a Godunov-type
scheme which solve the Navier–Stokes and turbulence-transport equations in a strongly cou-
pled fashion. Several turbulence closures were implemented in conjunction with the above
method and assessed for a broad range of dynamic stall �ows around pitching and oscillating
aerofoils. The NLEVM model provided better results than the linear EVMs and was able to
capture, at least qualitatively, the most important �ow phenomena occuring around pitching
and oscillating aerofoils, such as the DSV, leading and trailing edge separation, hysteresis of
the airloads, as well as associated unsteady shock=boundary-layer interaction in the transonic
regime. It was also found that the one-equation Spalart–Allmaras model performed well at
angles of incidence below 16◦.
Depending on the frequency of the unsteady motion of the lifting surface, dynamic or static

stall can be obtained. For rapidly moving lifting surfaces the DSV originates from the leading
edge. The computations revealed strong similarities regarding the onset of dynamic stall at
laminar and turbulent �ow conditions, as well as between pitching and oscillating aerofoils.
In the case of oscillating aerofoils, the DSV is shed in the wake as the aerofoil executes
downstroke motion and the �ow starts to reattach at the leading edge. For a certain range
of transonic Mach numbers, it was found that there is a change of the stall angle. This is
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Figure 12. Surface pressure histories: (a) AGARD CT1 case, (b) oscillating NACA-0012 at deep-stall
conditions, (c) oscillating NACA-0012 at low frequency, and (d) ramping NACA-0012.

probably due to the shock=boundary-layer interaction occuring near the leading edge of the
aerofoil. For small mean angle and oscillation amplitudes there is a smooth variation of the
pressure-coe�cient distribution on the aerofoil’s surface and the variation of the aerodynamic
loads are represented by a simple hysteresis loop. On the other hand, at deep-stall conditions
more complex variations of the aerodynamic loads occur due to the intense activation of
several vortices originating from the leading and trailing edges of the aerofoil.
The computations regarding the e�ects of the reduced frequency on the stall-angle, were

found to be in good qualitative agreement, especially in the case of the NLEVM, with previous
experimental studies [49]. The computations revealed di�erences between low and high pitch
rates. In the former case, a vortex is formed at the trailing edge of the aerofoil as soon as the
aerofoil reaches a certain incidence angle. The shedding of this vortex in the wake marks the
stall of the aerofoil and this is very similar to the static stall. On the other hand, at high pitch
rates the �ow is dominated by the DSV originating from the leading edge, which propagates
downstream over the suction side of the aerofoil and is �nally shed in the wake.
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